Selasa, 27 Oktober 2009

Katabolisme

Katabolisme adalah serangkaian reaksi yang merupakan proses pemecahan senyawa kompleks menjadi senyawa-senyawa yang lebih sederhana dengan membebaskan energi, yang dapat digunakan organisme untuk melakukan aktivitasnya. Termasuk didalamnya reaksi pemecahan dan oksidasi molekul makanan seperti reaksi yang menangkap energi dari cahaya matahari. Fungsi reaksi katabolisme adalah untuk menyediakan energi dan komponen yang dibutuhkan oleh reaksi anabolisme.

Sifat dasar yang pasti dari reaksi katabolisme berbeda pada setiap organisme, dimana molekul organik digunakan sebagai sumber energi pada organotrof, sementara litotrof menggunakan substrat anorganik dan fototrof menangkap cahaya matahari sebagai energi kimia. Tetapi, bentuk reaksi katabolisme yang berbeda-beda ini tergantung dari reaksi redoks yang meliputi transfer elektron dari donor tereduksi seperti molekul organik, air, amonia, hidrogen sulfida, atau ion besi ke molekul akseptor seperti oksigen, nitrat, atau sulfat. Pada hewan reaksi katabolisme meliputi molekul organik kompleks yang dipecah menjadi molekul yang lebih sederhana, seperti karbon dioksida dan air. Pada organisme fotosintetik seperti tumbuhan dan sianobakteria, reaksi transfer elektron ini tidak menghasilkan energi, tetapi digunakan sebagai tempat menyimpan energi yang diserap dari cahaya matahari.

Urutan yang paling umum dari reaksi katabolik pada hewan dapat dibedakan menjadi tiga tahapan utama. Pertama, molekul organik besar seperti protein, polisakarida, atau lemak dicerna menjadi molekul yang lebih kecil di luar sel. Kemudian, molekul-molekul yang lebih kecil ini diambil oleh sel-sel dan masih diubah menjadi molekul yang lebih kecil, biasanya asetil koenzim A (Asetil KoA), yang melepaskan energi. Akhirnya, kelompok asetil pada KoA dioksidasi menjadi air dan karbon dioksida pada siklus asam sitrat dan rantai transpor elektron, dan melepaskan energi yang disimpan dengan cara mereduksi koenzim Nikotinamid Adenin Dinukleotida (NAD+) menjadi NADH.

Pada setiap organisme, untuk menghasilkan energi tersebut dapat dibagi dalam dua cara, yaitu sebagai berikut.

1. Respirasi seluler atau respirasi aerob, yaitu reaksi yang menggunakan oksigen sebagai bahan bakar organik. Secara umum keseluruhan proses pada respirasi seluler berlangsung sebagai berikut.
>> Senyawa organik + Oksigen —> Karbon dioksida + Air + Energi
Termasuk ke dalam reaksi seluler adalah reaksi glikolisis, siklus Krebs, dan transpor elektron, dimana diantara glikolisis dan siklus Krebs terdapat sebuah reaksi antara yang disebut dekarboksilasi oksidatif.

2. Fermentasi, atau respirasi anaerob, yaitu proses pemecahan molekul yang berlangsung tanpa bantuan oksigen. Termasuk ke dalam fermentasi adalah fermentasi asam laktat, fermentasi alkohol, dan fermentasi asam cuka.

Pada hakikatnya, respirasi adalah pemanfaatan energi bebas dalam makanan menjadi energi bebas yang ditimbun dalam bentuk ATP. Dalam sel, ATP digunakan sebagai sumber energi bagi seluruh aktivitas hidup yang memerlukan energi. Aktivitas hidup yang memerlukan energi, antara lain sebagai berikut.

1. Kerja mekanis
Salah satu bentuk kerja mekanis adalah lokomosi. Kerja mekanis selalu terjadi jika sel otot berkontraksi.

2. Transpor aktif
Dalam transpor aktif, sel-sel harus mengeluarkan energi untuk mengangkut molekul zat atau ion yang melawan gradien konsentrasi zat.

3. Produksi panas
Energi panas penting bagi tubuh burung dan hewan menyusui. Energi panas ini, umumnya timbul sebagai hasil sampingan transformasi energi dalam sel. Misalnya, pada proses kontraksi otot, terjadi pemecahan ATP. Disamping timbul energi mekanik, timbul juga energi panas.

Respirasi Sel 12.1

Dari Crayonpedia

Langsung ke: navigasi, cari


Daftar isi

[sembunyikan] [sembunyikan]

B. RESPIRASI SEL

Didalam setiap sel hidup terjadi proses metabolism. Salah satu proses tersbut adalah katabolisme. Katabolisme disebut pula disimilasi, karena dalam proses ini energy yang tersimpan ditimbulkan kembali atau dibongkar untuk menyelenggarakan proses – proses kehidupan .
Respirasi sel berlangsung didalam mitokondria melalui proses glikolisis, yakni proses pengubahan atom C6 menjadi C3. Dilanjutkan dengan proses dekarboksilasi oksidatif yang mengubah senyawa C3 menjadi senyawa C2 dan C1 (CO2). Kemudian daur krebs mengubah senyawa C2 menjadi senyawa C1(CO2¬).
Pada setiap tingkatan ini dihasilkan energy berupa ATP (adenosine Tri Phosphat) dan Hidrogen . hydrogen yang berenergi bergabung dengan akseptor hydrogen untuk dibawa ke transfer electron ; energynya dilepaskan dan hydrogen diterima oleh O2 menjadi H2O .
Didalam proses respirasi dihasilkan senyawa antara CO2 yang merupakan bahan dasarproses anabolisme.
Didalam proses respirasi sel bahan bakarnya adalah gula heksosa. Pembakaran tersebut memerlukan oksigen bebas, sehingga reaksi keseluruhan dapat ditukis sebagai berikut :
C6h12O6 + 6 CO2 ---------------- 6 CO2 + 6H2O + 675 kal
Dalam respirasi aerob. Gula heksosa mengalami pembongkaran dengan proses yang sangat panjang. Pertamakali glukosa sebagai bahan dasar mengalami fosfolarisasi, yaitu proses penambahan fosfat kepada molekul – molekul glukosa hingga menjadi fruktosa -1, 6 – difosfat. Pada fosforilasi , ATP dan ADP memgang peranan penting sebagai pengisi fosfat.
Adapun pengubahan fruktosa – 1 , 6 – dipospat hingga akhirnya menjadi CO2 dan H2O dapat dibagi menjadi empat tahap , yaitu glikolisis, reaksi antara (dekarboksilasi oksidatif), siklus krebs, dan transfer electron.


1. Glikolisis

Adalah rangkaian reaksi pengubahan molekul glukosa menjadi asam piruvat dengan menghasilkan NADH dan ATP.
Sifat – sifat glikolisis ialah:
a. Dapat berlangsung secara aerob maupun anaerob
b. Dalam glikolisis terdapat kegiatan enzimatis dan AdenosineTrifosfat (ATP) serta Adenosine Difosfat (ADP)
c. ADP dan ATP berperan dalam pemindahan fosfat dari molekul satu ke molekul lainnya.

gambar:skemaglikolissis1.jpg
Glukosa sebagai substrat dalam respirasi aerob (maupun anaerob) diperoleh dari hasil fotosintesis.diawali dengan penambahan satu fosfat oleh ATPO terhadap glukosa, sehingga terbentuk glukosa – 6 fosfat dan ATP menyusut menjadi ADP . peristiwa ini disebut fosfolirasi yang berlangsung dengan bantuan enzim heksokinase dan ion Mg++ hasil akhir dari fosfolirasi berupa fruktosa-1, 6-difosfat dan dari sinilah dimulai glikolisis.
Glikolisis dimulai dari perubahan fruktosa -1, 6-difosfat yang memiliki 6 buah atom C diubah menjadi 3-difosfogliseral-dehida (dengan 3 buah atom C) dan dihidroksi-aseton-fosfat. Pembongkaran ini dibantu oleh enzim aldolase.
Dihidroksi aseton fosfat kemudian menjadi 3- fosfogliseraldehida juga dengan pertolongan enzim fosfitriosaisomerase.
Selanjutnya fosfogliseraldehida bersebyawa dengan suatu asam fosfat (H3PO4) dan berubah menjadi 1,3 –disfosfogliseraldehida.
1,3 – difosfogliseraldehida berubah menjadi asam 1,3 –difosfogliserat dengan bantuan enzimdehidrogenase. Peristiwa ini terjadi karena adanya penambahan H2.
Dengan bantuan enzim transfosforilase fosfogliserat serta ion – ion Mg++, asam 1,3-difosfogliserat kehilangan satu fosfat sehingga berubah menjadi asam – 3 – fosfogliserat.
Selanjutnya asam – 3 – fosfogliserat menjadi asam – 2 – fosfogliserat karena pengaruh enzim fosfogliseromutase.
Dengan pertolongan enzim enolase dan ion – ion Mg++, maka asam- 2-fosfofogliserat melepaskan H2O dan menjadi asam -2-fosfoenolpiruvat.
Perubahan terakhir dalam glikolisisadalah pelepasan satu fosfat dari asam-2-fosfoenolpiruvat menjadi asam piruvat. Enzim transfosforilase fosfopiruvat dan ion – ion Mg++ membantu proses ini sedang ADP meningkat menjadi ATP.
Gambar SKEMA PROSES GLIKOLISIS'





2. Reaksi Antara

Setelah glikolisis terjadi reaksi antara. (dekarboksilasi oksidatif), yaitu pengubahan asam piruvat menjadi 2 asetil KoA sambil menghasilkan CO2 dan 2NADH2 yang reaksinya adalah :


2 NAD 2NADH2
2(C3H4O3) 2 (C3H3O) – KoA + 2CO2
Piruvat Asetil KoA


Perubahan asam piruvat menjadi asetil KoA merupakan persimpangan jalan untuk menuju berbagai biosintesis yang lain. Asetil KoA yang terbentuk kemudian memasuki siklus krebs.


3. Siklus Krebs ( Siklus Asam Sitrat)


Pada siklus krebs ini (terjadi dimatriks mitokondria) asetil KoA diubah menjadi KoA. Asetil KoA bergabung dengan asam oksaloasetat membentuk asam sitrat. KoA dilepaskan sehingga memungkinkan untuk mengambil fragmen 2C lain dari asam piruvat.

SIKLUS KREBS


gambar:siklus krebs2.jpg
gambar:siklus krebs2.jpg
Pembentukan asam sitrat terjadi diawal siklus krebs , sementara itu sisa dua karbon dari glukosa dilepaskan sebagai CO2.
Selama terjadi pembentukan – pembentukan , energy yang dibutuhkan dilepaskan untuk menggabungkan fosfat denga ADP membentuk molekul ATP.
Pada siklus krebs , pemecahan rantai karbon pada glukosa selesai, Jadi, sebagai hasil dari glikoslisis , reaksi antara dan siklus krebs adalah pemecahan satu molekul glukosa 6 karbon menjadi 6 molekul 1 karbon, selain itu juga dihasilkan 2 molekul ATP dari glikolisis dan 2 ATP lagi dari siklus krebs.
Perlu diingat bahwa tiap – tiap proses melepaskan atom hydrogen yang ditranspor ke sistem transport electron oleh molekul pembawa .

4. Sistem transport electron

Pada sistem transpor electron berlangsung pengepakan energy dari glukosa menjadi ATP.
Reaksi ini terjadi didalam membaran dalam mitokondria, hydrogen dari siklus krebs yang tergabung dalam FADH2dan NADH diubah menjadi elektorn dan proton.
Pada sistem transport electron ini, oksigen adalah akseptor electron yang terakhir , setelah menerima electron , O2 akan bereaksi dengan H+ membentuk H2O. pada sistem ini dihasilkan 34 ATP.
Jadi total ATP yang dihasilkan dari respirasi seluler adalah sebagai berikut:
Secara tidak langsung secara Lewat sistem transport elektron langsung

Glikolisis 2 NADH2 = 6 ATP 2 ATP
Reaksi antara 2 NADH2 = 6 ATP
Siklus Krebs 6 NADH2 = 18 ATP 2 ATP
2 FADH2 = 4 ATP

------------------------------------ ------------------

34 ATP 4 ATP


5. Respirasi Aerob dan Anaerob

Respirasi aerob adalah suatu proses pernapasan yang membutuhkan iksigen dari udara.
Ada beberapa tumbuhan yang kegiatan respirasinya menurun bila konsentrasi oksigen di udara dibawah normal, misalnya bayam, wortel dan bebrapa tumbuhan lainnya.

Respirasi anaerob dapat pula disebut fermentasi atau respirasi intramolekul. Tujuan fermentasi sama dengan respirasi aerob, yaitu mendapatkan energy. Hanya saja energi yang dihasilkan jauh lebih sedikit dari respirasi aerob.
Perhatikan reaksi dibawah ini!
Respirasi aerob :

C6H12O6 ---- 6 CO2 + 6 H2O + 675 kal + 38 ATP
Respiasi anaerob:

C6H12O6 ------ 2 C2H5OH + 2CO2 + 21 kal + 2 ATP
Pernapasan anaerob dapat berlangsung didalam udara bebas, tetapi proses ini tidak menggunakan O2 yang disediakan di udara. Fermentasi sering pula disebut sebagai peragian alcohol atau alkoholisasi.

Pada respirasi aerob maupun anaerob, asam piruvat hasil proses glikolisis merupakan substrat.

Perhatikan skema dibawah ini !
gambar:asam piruvat1.jpg
Respirasi aerob dan respirasi anaerob


a) Asam piruvat dalam respirasi anaerob

gambar:aerob1.jpg

b) Asam piruvat dalam respirasi aerob
Pembongkaran sempurna terjadi pada oksidasi asam piruvat dalam respirasu aerob. Dari proses ini dihasilkan CO2 dan H2O serta energy yang lebih banyak , yaitu 38 ATP.

Sintesis Protein
21:31 | Author: For everyone

DNA
DNA adalah rantai doble heliks berpilin yang terdiri atas polinukleotida. Berfungsi sebagi pewaris sifat dan sintesis protein.

Struktur DNA (deoxyribosenucleic acid) yaitu:
1. gula 5 karbon (deoksiribosa)
2. gugus fosfat
3. basa nitrogen.

Bentuk DNA adalah rantai double heliks berpilin ke kanan. Dalam DNA terdapat struktur-struktur di atas. Namun, jika diambil 1 lempeng yang mengandung ikatan fosfat, gula dan basa nitrogen, maka lempeng tersebut disebut nukleotida. Jika plat itu hanya basa nitrogen dan gula saja maka disebut nukleosida. Maka, DNA adalah polimer dari nukleotida.
Gula deoksiribosa pada DNA merupakan gula lima karbon yang kehilangan 1 atom oksigen. Gula deoksiribosa memegang basa nitrogen pada atom karbon nomor 1, sedangkan atom C nomor 5 berikatan dengan gugus fosfat. Gugus fosfat ini saling berikatan dengan gugus fosfat lainnya membentuk ikatan fosfodiester. Karena DNA merupakan rantai ganda dan atom-atom karbon mempunyai aturan diatas untuk mengikat basa nitrogen dan gugus fosfat maka satu rantai DNA terlihat berdiri tegak sedangkan rantai pasangannya justru terbalik. Maka pada notasi penulisan kode genetik DNA, ditulis 5’-kode genetik-3’, sedangkan untuk rantai pasangannya justru ditulis 3’-kode genetik-5’. Pengaturan ini disebut konfigurasi antiparalel.

Ada 2 kelompok basa nitrogen yang berikatan pada DNA yaitu

· Purin, terdiri dari basa nitrogen adenine dan guanin.

· Pirimidin, terdiri dari basa nitrogen sitosin dan timin . pada RNA, timin diganti dengan urasil.

Basa Purin selalu berpasangan dengan basa pirimidin melalui ikatan hidrogen. Adenine selalu berpasangan dengan hymine melalui 2 ikatan hidrogen sedangkan cytosine berpasangan dengan guanine melalui 3 ikatan hidrogen.




REPLIKASI DNA
Replikasi DNA berarti penggandaan. Ada 3 model replikasi DNA yaitu :

1. Model konservatif.

Model ini menyatakan bahwa 2 rantai DNA bereplikasi tanpa memisahkan rantai-rantainya.

2. Model semi konservatif.

Model ini menyatakan bahwa 2 rantai DNA berpisah kemudian bereplikasi.

3. Model dispersi.

Model ini menyatakan bahwa DNA terpecah menjadi potongan-potongan yang kemudian bereplikasi.

Meselson dan Stahl membuktikan bahwa DNA bereplikasi sesuai model semi-konservatif.

Proses replikasi terbagi atas 3 tahap:

1. Inisiasi. Replikasi tidak berlangsung pada titik acak pada DNA namun berlangsung pada awal yang disebut tempat awal replikasi. Protein inisiator menempel pada daerah tersebut kemudian berikatan menyebatkan rantai heliks terbuka untuk menunjukkan satu rantai yang digunakan untuk membangun rantai baru.

2. Elongasi. DNA polimerase bertugas untuk memasangkan basa nitrogen baru dengan rantai DNA lama sehingga terbentuklah rantai DNA yang baru. DNA polymerase menambahkan basa-basa baru ke ujung 3 rantai yang ada, kemudian mereka mensintesis dari arah 5’ ke 3’ dengan menyediakan rantai basa pasangan untuk cetakan. Triplet AUG merupakan sinyal untuk memulai proses sintesis, sehingga triplet ini dinamakan kodon start.

3. Terminasi. Replikasi berakhir saat DNA polimerase mengenali daerah basa nitrogen yang diulang-ulang, daerah ini disebut telomer.Maka terbentuklah rantai DNA yang baru.

Pada Sintesis protein, salah satu rantai DNA akan dikodekan oleh mRNA. Rantai yang dikodekan tersebut disebut DNA Sense atau DNA template, sedangkan rantai pasangannya yang tidak dicetak disebut DNA Antisense atau DNA Komplementer. Triplet kode-kode genetik DNA yang dikodekan oleh mRNA disebut kodogen.

RNA
Berbeda dengan DNA, RNA merupakan rantai panjang lurus yang berfungsi dalam sintesis protein. Terdapat 3 jenis RNA yaitu:
1. mRNA(messenger RNA atau RNA duta/RNAd), bertugas untuk mengkodekan kode genetik dari DNA untuk sintesis protein. Terdapat di anak inti.sel. Triplet kode genetik pada mRNA disebut kodon.
2. tRNA(transfer RNA atau RNAt), bertugas untuk mencocokkan triplet yang ada pada mRNA dengan protein yang sesuai. Terdapat di sitoplasma. Triplet kode genetik pada tRNA disebut antikodon.
3. rRNA(ribosomal RNA atau RNAr), bertugas untuk memasangkan kodon mRNA dengan antikodon tRNA dan menggeser rantai-rantai supaya terbentuk polipeptida(protein). Terdapat di ribosom.

Struktur RNA(ribosenucleic acid) yaitu

1. Gula 5 karbon ribosa.

2. Gugus fosfat.

3. Basa nitrogen yang persis sama dengan basa nitrogen DNA namun pada mRNA thymine diganti dengan urasil.


PRA SINTESIS PROTEIN

Sebelum sintesis protein dilakukan, perlulah diadakan persiapan yang menyeluruh, salah satunya pemasangan asam amino pada salah satu ujung tRNA. 1 asam amino harus diikatkan pasada salah satu ujung tRNA dengan antikodon yang benar, namun protein ini sesuai dengan kodon bukan antikodon. Enzim yang melakukan proses ini adalah enzim tRNA aminoasil sintetase. Enzim ini mengikatkan asam amino pada bagian sisi asam amino kemudian tRNA dengan antikodon spesifik untuk asam aminonya. tRNA dan asam amino berikatan pada enzim sebelum akhirnya dilepaskan.

SINTESIS PROTEIN

Sintesis protein adalah proses pembentukan protein dari monomer peptida yang diatur susunannya oleh kode genetik. Sintesis protein dimulai dari anak inti sel, sitoplasma dan ribosom. Sintesis protein terdiri dari 3 tahapan besar yaitu:

1. Transkripsi.

DNA membuka menjadi 2 rantai terpisah. Karena mRNA berantai tunggal, maka salah satu rantai DNA ditranskripsi (dicopy). Rantai yang ditranskripsi dinamakan DNA sense atau template dan kode genetik yang dikode disebut kodogen. Sedangkan yang tidak ditranskripsi disebut DNA antisense/komplementer. RNA Polimerase membuka pilinan rantai DNA dan memasukkan nukleotida-nukleotida untuk berpasangan dengan DNA sense sehingga terbentuklah rantai mRNA. Contoh transkripsi:

2. Translasi

mRNA / RNAd yang sudah terbentuk keluar dari anak inti sel menuju rRNA. Disana mRNA masuk ke rRNA / RNAr diikuti oleh tRNA / RNAt. Ketika antikodon pada tRNA cocok dengan kodon mRNA kemudian rantai bergeser ke tengah. Kodon mRNA berikutnya dicocokkan dengan tRNA kemudian asam amino yang pertama berikatan dengan asam amino kedua. tRNA pertama keluar dari rRNA. Proses ini berlangsung hingga kodon stop, ribosom subunit besar dan kecil terpisah, mRNA dan tRNA keluar dari ribosom.

Kodon stop : UAA,UAG, UGA

Rumus cepat:mRNA=DNA komplementer=DNA antisense=kode protein
tRNA=DNA template=DNA sense=kodogen. Berikut ini adalah gambar proses sintesis protein.



Tidak ada komentar:

Poskan Komentar